Matriz de una Transformación Lineal

Departamento de Matemáticas, CCIR/ITESM

9 de febrero de 2011

Índice

28.1. Matriz de una Transformación Lineal . 1
28.2. Toda transformación Lineal es Matricial . 4
28.3. Operativa del Trabajo con Transformaciones . 5

28.1. Matriz de una Transformación Lineal

Sea $T : V \rightarrow W$ una transformación lineal entre dos espacios vectoriales V y W de dimensiones finitas. Sea $B = \{v_1, \ldots, v_n\}$ una base de V y $B' = \{v'_1, \ldots, v'_n\}$ una base de W. La matriz $A_{m \times n}$ cuyas columnas son:

$$[T(v_1)]_{B'}, \ldots, [T(v_n)]_{B'}$$

es la única matriz que satisface

$$[T(\vec{v})]_{B'} = A[\vec{v}]_B$$

para todo $\vec{v} \in V$.

Definición 28.1
La matriz A de la afirmación anterior se llama matriz de T con respecto a B y a B'.
Si $V = W$ y $B = B'$, A se llama matriz de T con respecto a B.

Ejemplo 28.1
Suponga que

$$T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$$

$$B = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}, \quad B' = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\},$$

y que

$$[T]_{B'} = \begin{bmatrix} -3 & 0 & 2 \\ -3 & 3 & 3 \\ -1 & 3 & 2 \end{bmatrix}$$

Determine

$$T \begin{bmatrix} 3 \\ -1 \\ -4 \end{bmatrix}$$
Solución
Tenemos que la matriz $[T]_B^B$ cumple $[T(\vec{v})]_B^B = [T]_B^B [\vec{v}]_B$. Si $\vec{v} = <3, -1, -4>$, entonces para obtener $[\vec{v}]_B$ hacemos:

$[B|\vec{v}] = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -4 \end{bmatrix}$

Por tanto, $[\vec{v}]_B = <3, -1, -4>$ y de allí que

$[T(\vec{v})]_B^B = \begin{bmatrix} -3 & 0 & 2 \\ -3 & 3 & 3 \\ -1 & 3 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ -1 \\ -4 \end{bmatrix} = \begin{bmatrix} -17 \\ -24 \\ -14 \end{bmatrix}$

Por tanto,

$T(\vec{v}) = -17 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 24 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 14 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -17 \\ -24 \\ -14 \end{bmatrix}$

Ejemplo 28.2
Suponga que $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$

$B = \begin{Bmatrix} \begin{bmatrix} 0 \\ 2 \\ -5 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -5 \end{bmatrix} \end{Bmatrix}$, $B' = \begin{Bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} \end{Bmatrix}$,

y que

$[T]_B^B = \begin{bmatrix} -5 & -4 & 1 \\ 1 & -2 & 4 \\ 0 & -4 & -3 \end{bmatrix}$

Si $[x]_B = \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}$

Determine $[T(x)]_B^B$.

Solución
Directamente de la definición de $[T]_B^B$:

$[T(x)]_B^B = [T]_B^B [x]_B$

$= \begin{bmatrix} -5 & -4 & 1 \\ 1 & -2 & 4 \\ 0 & -4 & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ -1 \end{bmatrix}$

$= \begin{bmatrix} -21 \\ 0 \\ 3 \end{bmatrix}$

Ejemplo 28.3
Suponga que $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$

$B = \begin{Bmatrix} \begin{bmatrix} -5 \\ 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 3 \end{bmatrix}, \begin{bmatrix} -4 \\ -4 \\ -1 \end{bmatrix} \end{Bmatrix}$, $B' = \begin{Bmatrix} \begin{bmatrix} -1 \\ -5 \\ -2 \end{bmatrix}, \begin{bmatrix} -5 \\ 5 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 3 \end{bmatrix} \end{Bmatrix}$,
y que
\[
[T]^{B'}_B = \begin{bmatrix}
5 & -4 & 1 \\
3 & 3 & 3 \\
3 & -1 & 0
\end{bmatrix}
\]
Si
\[
[x]_B = \begin{bmatrix}
3 \\
-3 \\
5
\end{bmatrix}
\]
Determine \(T(x)\).

Solución

Directamente de la definición de \([T]^{B'}_B\):
\[
[T(x)]_{B'} = [T]^{B'}_B [x]_B
\]
\[
= \begin{bmatrix}
5 & -4 & 1 \\
3 & 3 & 3 \\
3 & -1 & 0
\end{bmatrix} \begin{bmatrix}
3 \\
-3 \\
5
\end{bmatrix}
\]
\[
= \begin{bmatrix}
32 \\
15 \\
12
\end{bmatrix}
\]

Por tanto,
\[
T(x) = 32 \left(\begin{array}{c}
-1 \\
-5 \\
-2
\end{array} \right) + 15 \left(\begin{array}{c}
-5 \\
5 \\
2
\end{array} \right) + 12 \left(\begin{array}{c}
2 \\
-1 \\
3
\end{array} \right) = \begin{bmatrix}
-82 \\
-97 \\
2
\end{bmatrix}
\]

Ejemplo 28.4

Suponga que
\[
T : \mathbb{R}^3 \rightarrow \mathbb{R}^3
\]
\[
B = \left\{ \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
-5 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
2
\end{bmatrix} \right\}, \quad B' = \left\{ \begin{bmatrix}
1 \\
-4 \\
-2
\end{bmatrix}, \begin{bmatrix}
3 \\
-2 \\
1
\end{bmatrix}, \begin{bmatrix}
-4 \\
-2 \\
-2
\end{bmatrix} \right\},
\]
y que
\[
[T]^{B'}_B = \begin{bmatrix}
-1 & 0 & 0 \\
4 & -1 & 3 \\
0 & 0 & 5
\end{bmatrix}
\]
Si
\[
x = \begin{bmatrix}
4 \\
-2 \\
0
\end{bmatrix}
\]
Determine \(T(x)\).

Solución

Si \(x = < 4, -2, 0 >\), entonces para obtener \([x]_B\) hacemos:
\[
[B|x] = \begin{bmatrix}
1 & -1 & 0 & 4 \\
1 & -5 & 0 & -2 \\
0 & 1 & 2 & 0
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 0 & 11/2 \\
0 & 1 & 0 & 3/2 \\
0 & 0 & 1 & -3/4
\end{bmatrix}
\]
Por tanto, \([x]_B = \langle 11/2, 3/2, -3/4 \rangle \) y de allí que
\[
[T(x)]_{B'} = [T]_B^{B'} [x]_B = \begin{bmatrix}
-1 & 0 & 0 \\
4 & -1 & 3 \\
0 & 0 & 5
\end{bmatrix} \cdot \begin{bmatrix}
11/2 \\
3/2 \\
-3/4
\end{bmatrix} = \begin{bmatrix}
-11/2 \\
73/4 \\
-15/4
\end{bmatrix}
\]
Por tanto,
\[
T(x) = -11/2 \begin{bmatrix}
1 \\
-4 \\
-2
\end{bmatrix} + 73/4 \begin{bmatrix}
3 \\
-2 \\
-2
\end{bmatrix} - 15/4 \begin{bmatrix}
-4 \\
1 \\
-2
\end{bmatrix} = \begin{bmatrix}
257/4 \\
-73/4 \\
-18
\end{bmatrix} \]

Notas
Observe que si \([B]\) representa la matriz cuyas columnas son los vectores de \(B\):

- Para obtener \([x]_B\) dados \(B\) y \(x\), se realiza el cálculo \([B]^{-1}x\).
- Para obtener \(y\) dados \([y]_{B'}\) y \(B'\), se realiza \([B'] \cdot [y]_{B'}\).

Ejemplo 28.5
Suponga que
\[
T : \mathbb{R}^3 \rightarrow \mathbb{R}^3
\]
se define como
\[
T \begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
3x - 2z \\
x + y - z \\
5x + 4z
\end{bmatrix}
\]
y además
\[
B = \left\{ \begin{bmatrix}
0 \\
1 \\
-5
\end{bmatrix}, \begin{bmatrix}
-2 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
4 \\
4 \\
-5
\end{bmatrix} \right\}, B' = \left\{ \begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
-3 \\
-4 \\
-4
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \right\}.
\]
Determine la matriz \([T]_B^{B'}\). **Solución**
Por las notas anteriores a este ejemplo y como tenemos que \(T\) se puede representar como:
\[
T \begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix}
3x - 2z \\
x + y - z \\
5x + 4z
\end{bmatrix} = \begin{bmatrix}
3 & 0 & -2 \\
1 & 1 & -1 \\
5 & 0 & 4
\end{bmatrix} \cdot \begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]
De donde tenemos que
\[
[T]_B^{B'} = [B'] \cdot \begin{bmatrix}
3 & 0 & -2 \\
1 & 1 & -1 \\
5 & 0 & 4
\end{bmatrix} \cdot [B]^{-1}
\]
Realizando los cálculos anteriores:
\[
[T]_B^{B'} = \begin{bmatrix}
3/2 & 0 & 3/5 \\
9/2 & -5 & -4/5 \\
5 & -6 & -2
\end{bmatrix}
\]

28.2. Toda transformación Lineal es Matricial

A pesar de que las transformaciones matriciales son las transformaciones lineales más sencillas, en \(\mathbb{R}^n\) son las únicas. Esto lo afirma el siguiente resultado.

Teorema

Toda transformación lineal \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m\) es una transformación matricial.
28.3. Operativa del Trabajo con Transformaciones

Lo que afirma el siguiente resultado es que para trabajar con una transformación lineal (Núcleo, subespacios, o imagen) es equivalente a trabajar con la matriz de la transformación.

Teorema

Sea $T : V \rightarrow W$ una transformación lineal entre dos espacios vectoriales de dimensiones finitas, V y W. Sea A la matriz de T con respecto a las bases $B = \{v_1, ... v_n\} \subseteq V$ y $B' = \{v_1', ..., v_m'\} \subseteq W$. Entonces,

- \vec{v} está en el núcleo de T si y sólo si $[v]_B$ está en el espacio nulo de A. Es decir, $A[v]_B = 0$.
- \vec{w} está en el contradomino de T si y sólo si $[w]_{B'}$ se encuentra en el espacio de columnas de A. Es decir, $Ax = [w]_{B'}$ es consistente.
- T es biunívoca si y sólo si la reducida de A tiene n pivotes.
- T es sobre si y sólo si la reducida de A tiene m pivotes.
- T es un isomorfismo si y sólo si A es invertible.

Ejemplo 28.6

Suponga que $T : \mathcal{P}_1 \rightarrow \mathcal{P}_1$ se define como $T(p) = (1 + 6x)p' - 6p$ determine la matriz $[T]_B^{B'}$ para las bases $B = \{5 + 5x, -4 + 2x\}$ y $B' = \{5 - x, -4 - 4x\}$ Utilice lo anterior para calcular un polinomio en el núcleo de la transformación T.

Solución

Si $p = a + bx$ representa cualquier polinomio de \mathcal{P}_1, entonces

$$T(a + bx) = (1 + 6x)(b) - 6(a + bx) = b - 6a = (b - 6a) + 0x$$

Así, T puede pensarse como:

$$T(a + bx) = \begin{bmatrix} -6 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix}$$

Por tanto,

$$[T]_B^{B'} = \begin{bmatrix} 5 & -4 \\ -1 & -4 \end{bmatrix} \cdot \begin{bmatrix} -6 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 5 & -4 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} -17/6 & -19/6 \\ 17/30 & 19/30 \end{bmatrix}$$

El núcleo de esta matriz se obtiene resolviendo $[T]_B^{B'}x = 0$:

$$[T]_B^{B'} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 19/17 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Por lo tanto, el núcleo de $[T]_B^{B'}$ se genera por el vector:

$$[v]_B = \begin{bmatrix} -19/17 \\ 1 \end{bmatrix}$$
De allí que el núcleo de T se genere por:

$$v = [B]\mathbf{v}_B = \begin{bmatrix} 1/15 & 2/15 \\ -1/6 & 1/6 \end{bmatrix} \cdot \begin{pmatrix} -19/17 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/17 \\ 6/17 \end{pmatrix}$$

Por tanto, cualquier polinomio de la forma $C (1/17 + 6/17 x)$ está en el núcleo de T

El siguiente resultado relaciona la matriz de cambio de base con la matriz asociada a una transformación lineal.

Teorema

Sea $T : V \to V$ una transformación lineal de un espacio vectorial V de dimensión finita en sí mismo. Sean \mathcal{B} y \mathcal{B}' dos bases de V, y sea P la matriz de transición de \mathcal{B}' a \mathcal{B}. Si A es la matriz de T con respecto a \mathcal{B} y si C es la matriz de T con respecto a \mathcal{B}', entonces

$$C = P^{-1} A P$$